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Abstract

Explicit wavenumber shift and frequency shift expressions are derived for the resonances of a cracked, transversely

vibrating beam. These explicit expressions apply to beams with both shallow and deeper cracks. The explicit expressions

are approximate, however, and are therefore generally inaccurate for the fundamental beam mode, and for a crack located

in a boundary near field. The explicit expressions indicate that wavenumber shift and frequency shift are approximately

proportional to the potential energy in the uncracked beam at the (future) crack location. Experimental results are

presented for a freely vibrating, free–free beam with a midspan, single-edge slot. Data was collected for bending about both

the strong axis and the weak axis. The experimental wavenumber shift curves generally agree well with the theoretical

wavenumber shift curves.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Condition-based maintenance (CBM) is one of the major maintenance philosophies for machines and
structures [1]. In a CBM architecture, maintenance decisions are based on both the current condition, or
health, of a machine or structure, and the estimated future condition of the machine or structure. To obtain an
estimate of machine or structure condition, however, measurable characteristics are needed that reflect the
condition of the machine or structure [2, pp. 35–38, 241].

One characteristic of a machine or structure that can be used for condition monitoring is a resonance
frequency, or resonance wavenumber. If a structure is cracked, for example, the structure generally
experiences a decrease in overall stiffness [3–7]. Since the resonance frequencies and resonance wavenumbers
of a structure depend on overall stiffness, the introduction and growth of a crack in a structure is reflected
through changes in the resonance frequencies and resonance wavenumbers.

The focus of this work is the derivation of explicit wavenumber shift and frequency shift expressions for a
cracked, lossless, transversely vibrating beam. These explicit wavenumber shift and frequency shift expressions
are appropriate not only for beams with shallow cracks, but also for beams with deeper cracks. Given that the
explicit frequency shift expressions available in the literature [6,8–12] generally apply only to beams with small
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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defects, the explicit expressions derived here can be used in conjunction with the explicit, small-crack
expressions available in the literature to form a more complete picture of the failure process for a cracked
structure. Note that the phrase ‘‘small crack’’ refers not to the physical size of the crack, but to the effective
size of the crack [13,14]. In other words, a small crack is one that has a small effect on beam vibration,
regardless of absolute crack length. Likewise, a deep crack is one that has a significant effect on beam
vibration, regardless of absolute crack length.

The benefits of explicit expressions are that they help illuminate underlying damage physics, and they help
clarify system dependencies. The tradeoff for these benefits, however, is that the expressions are limited in
applicability. For example, the explicit expressions derived in this work are generally inaccurate for the
fundamental beam mode. In addition, the explicit expressions derived here apply only for cracks located in the
vibratory far field, the far field being all points on the beam at least one half-wavelength from a boundary.
Another limitation of the explicit expressions derived in this work is that the expressions apply only to
symmetric, uniform beams.

Explicit expressions are derived in this work using a series of approximations collectively called high-
frequency approximations. The phrase ‘‘high frequency,’’ however, is a little misleading because the
approximations, and the resulting wavenumber shift and frequency shift expressions, are generally applicable
to all but the lowest beam mode. The ‘‘high-frequency’’ terminology is used because the approximations tend
to improve as frequency increases.

2. Background

A significant number of works have been published that relate to crack- or slot-induced changes in
resonance frequencies. An overview of much of the work is available in several review papers [3–5,15–18].
Despite the substantial amount of work done in the field of crack-induced changes in resonance frequencies,
only a small fraction of the work includes derivations of explicit solutions for frequency, frequency shift, or
wavenumber shift. Since explicit wavenumber shift and frequency shift expressions are the focus of this work,
the discussion given in this section includes only those authors who derive explicit frequency, frequency shift,
or wavenumber shift expressions.

The number of published works regarding crack- or slot-induced changes in resonance frequencies is
indicative of the number of different models available for damaged beams. One of the more common models
used in the literature is the rotational spring model [8–10,19–23]. The rotational spring model involves
modelling a cracked beam as two beam segments connected by a rotational spring. The rotational spring
accounts for the additional flexibility introduced by the crack. The rotational spring model is the basis for the
analysis given in this paper.

Morassi [8,24], Hasan [9], and Liang and Hu [6,10,11] all derive explicit solutions for frequency and
frequency shift using the rotational spring model. Morassi gives an explicit frequency shift expression for a
cracked beam vibrating in bending. Morassi derives this explicit frequency shift expression using a perturbation
approach. Hasan uses an approach similar to Morassi’s to derive an explicit frequency shift expression for a
cracked beam on an elastic foundation. Hasan shows that frequency shift lacks an explicit dependence on the
elastic foundation. Hasan’s expression is therefore the same as Morassi’s. Morassi’s and Hasan’s results are
valid for symmetric beams terminated with rotational and translational springs. Morassi’s and Hasan’s results
can also be applied to nonuniform beams. Liang and Hu derive an explicit frequency shift expression for a
cracked beam vibrating in bending, but approach the problem using a Taylor series expansion.

Gudmundson derives an explicit expression for the resonance frequencies of a vibrating structure [12].
Gudmundson’s expression is valid for a wide range of structures, including structures with defects and
geometric modifications, and structures undergoing various types of vibration. Gudmundson uses an energy-
based, perturbation approach to derive the explicit frequency expression. Gudmundson is the only author of
those mentioned here who does not use the rotational spring model. Gudmundson’s expression is also the only
one of those mentioned here that can account for a loss of mass in addition to a loss of stiffness.

The expressions derived by Gudmundson, Morassi, Hasan, and Liang and Hu are all valid for any defect
location, and are all valid for any mode in the Bernoulli–Euler region [19]. The main limitation of these explicit
expressions, however, is that they are valid only for small defects.
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Arzoumanian [25] derives explicit wavenumber shift expressions that are valid for a vibrating beam with a
deeper crack. Arzoumanian obtains explicit solutions for wavenumber shift by applying high-frequency
approximations to the characteristic equation obtained from the rotational spring model. Arzoumanian gives
explicit wavenumber shift expressions for a beam with a sliding boundary crack, a beam with a clamped
boundary crack, and a symmetric beam with a midspan crack. Arzoumanian also analyzes a beam with an
arbitrarily located crack, but does not give an explicit wavenumber shift expression for the beam. The general
procedure used to derive the explicit expressions in this work is similar to the general procedure used by
Arzoumanian.

3. Wavenumber shift expressions

A cracked beam and the associated rotational spring model are shown in Fig. 1. The beam is assumed to be
vibrating in flexure, and the uncracked beam is assumed to be uniform with a rectangular cross-section. The
crack is assumed to be transverse and through-the-thickness. The other assumptions typically associated with
the rotational spring model also apply [7,10,24,13, pp. 15–22].

The uncracked beam corresponding to Fig. 1 has a length L, a width h, a thickness t, and a cross-sectional
area A ¼ ht. Crack depth is denoted a, and the rotational spring in Fig. 1 has an equivalent compliance Cs.

The coordinate system for the beam is rectangular, with the origin at midspan. Axial position is x, axial
crack location is xs, and �L=2px, xspL=2. The quantity y is the coordinate in the thickness direction and z is
the coordinate in the width direction.

Bernoulli–Euler beam theory is assumed to be valid everywhere in the model beam and beam segments.
The transverse vibration of the beam is therefore described by the classical bending wave equation

d4wðxÞ

dx4
� k4wðxÞ ¼ 0,

where time harmonic motion is assumed and k4
¼ o2rA=ðEIÞ. The quantity wðxÞ is beam deflection, k is

bending wavenumber, o is radian frequency, r is material density, E is the modulus of elasticity, and I is the
second moment of area.

Explicit solutions for wavenumber shift are obtained by applying high-frequency approximations to the
characteristic equation associated with the rotational spring model. The characteristic equation is obtained by
assuming a deflection for each sub-beam, and then plugging these two deflections into the appropriate
continuity, compatibility, and boundary conditions. The deflections of the sub-beams are

w1ðxÞ ¼ A1 sin k
L

2
þ x

� �� �
þ B1 cos k
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Fig. 1. A cracked beam (a) and the associated rotational spring model (b).
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and

w2ðxÞ ¼ A2 sin k
L

2
� x

� �� �
þ B2 cos k

L

2
� x

� �� �
þ C2 sinh k

L

2
� x

� �� �
þD2 cosh k

L

2
� x

� �� �
.

The continuity and compatibility conditions at the crack location xs are, after introducing prime notation,

w1ðxsÞ � w2ðxsÞ ¼ 0,

w01ðxsÞ � w02ðxsÞ þ
4g
k0

w001ðxsÞ ¼ 0,

w001ðxsÞ � w002ðxsÞ ¼ 0

and

w0001 ðxsÞ � w0002 ðxsÞ ¼ 0.

The quantity g is EIk0Cs=4, where k0 is the wavenumber for the undamaged beam and k is the
corresponding wavenumber for the damaged beam.

The analysis given in this paper is limited to symmetric beams. The boundary conditions for the beam in
Fig. 1 must therefore support this symmetry. Assume, then, that the beam is clamped at both ends. Although
the wavenumber shift expressions are initially derived for a beam with clamped boundaries, the expressions
are eventually generalized to symmetric beams with other boundary conditions.

The boundary conditions for the clamped–clamped beam are w1ð�L=2Þ ¼ 0, w01ð�L=2Þ ¼ 0, w2ðL=2Þ ¼ 0,
and w02ðL=2Þ ¼ 0. The characteristic equation for a clamped–clamped beam with an arbitrarily located crack is

1� cosðkLÞ coshðkLÞ

þ 4g
k

k0
sin k

L

2

� �
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L
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� �
cosh2 k
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� cos k
L
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� �
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þ sin k
L

2

� �
cosh k

L

2

� �
cosðkxsÞ coshðkxsÞ þ sinðkxsÞ sinhðkxsÞ½ �

� sinh k
L

2

� �
cosh k

L

2

� �
cos2 k

L

2

� �
� sin2ðkxsÞ

� ��
¼ 0. ð1Þ

The first two terms in Eq. (1) represent the characteristic equation for an uncracked, clamped–clamped
beam.

Eq. (1) cannot be solved explicitly for wavenumber or wavenumber shift. An approximate, explicit
solution for wavenumber shift, however, may be obtained for higher frequencies. Assume that the
dimensionless wavenumber kL is large enough such that sinhðkL=2ÞF coshðkL=2ÞFekL=2=2, and such that
2e�kLF0 [26, p. 209, 27, p. 277]. Given that the dimensionless resonance wavenumbers for a clamped–clamped
beam are approximately kL ¼ ðmþ 1=2Þp, where m ¼ 1; 2; 3; . . . [28], the quantities sinhðkL=2Þ and
coshðkL=2Þ differ by 2% for the first mode ðm ¼ 1Þ, by 0.08% for the second mode ðm ¼ 2Þ, and by less
then 0.004% for modes three and higher ðmX3Þ. The difference between sinhðkL=2Þ and coshðkL=2Þ decreases
rapidly for increasing dimensionless wavenumber kL. The quantity 2e�kL is 0.02 for the first mode, and less
than 0.0008 for modes two and higher.

The approximation sinhðkL=2ÞF coshðkL=2Þ is a large-argument approximation. It is also a high-frequency
approximation since the argument is proportional to wavenumber. Nevertheless, the approximation
sinhðkL=2ÞF coshðkL=2Þ is generally valid for all but possibly the lowest beam mode. The physical
implication of the approximation sinhðkL=2ÞF coshðkL=2Þ is that the boundary near field, represented by the
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exponential decay terms in the solution to the bending wave equation, decays rapidly in space at higher
frequencies, and is thus negligible with respect to overall beam deflection [29, pp. 125–126].1 Overall beam
deflection can therefore be adequately described by just the far-field deflection, which is dominated by the
sinusoidal, or propagating wave, terms in the solution to the bending wave equation. As a result of neglecting
the near-field contribution to overall beam deflection, the remaining equations in this section include
sinusoidal functions only; the equations do not include hyperbolic functions. Note that although the near-field
contribution to overall beam deflection is neglected, the boundaries still have an impact on frequency and
spatial phase [30, p. 34].

In addition to assuming that beam deflection can be adequately characterized by the far-field contribution,
assume that the crack is located in the far field. With this restriction on crack location, sinhðkL=2Þbj sinhðkxsÞj

by more than a factor of 10 and sinhðkL=2Þb coshðkxsÞ by more than a factor of 10. Incorporating these
inequalities into Eq. (1) as approximations, and applying the approximations of the previous paragraphs to
Eq. (1) yields

gk=k0

1þ gk=k0
sinðkLÞ � cosðkLÞ ¼

gk=k0

1þ gk=k0
cosð2kxsÞ. (2)

Eq. (2) is a better approximation of Eq. (1) for higher frequencies and for crack locations closer to midspan.
Eq. (2) may also be obtained from expressions given in the literature. Eq. (2) may be obtained from

Arzoumanian [25, p. 53], Eq. (4.55), after shifting the coordinate system to midspan. Eq. (2) may be obtained
from both Reznicek and Springer [22] and Narkis and Elmalah [23] by applying the procedure used to obtain
Eq. (2) from Eq. (1). Both Arzoumanian and Reznicek give the characteristic equation for a free–free beam
with an arbitrarily located crack. Narkis gives the characteristic equation for a cantilever beam with an
arbitrarily located crack. Eq. (2) therefore applies not only to a clamped–clamped beam, but also to free–free
and cantilever beams.

The quantity of interest is not absolute wavenumber, but is instead the absolute change in wavenumber.
Mathematically, Dk is wavenumber shift and is given by Dk ¼ k0 � k. Eq. (2) may be rewritten in terms of
wavenumber shift as

sinðDkLÞ � m cosðDkLÞ ¼ �m cos 2k0xs 1�
Dk

k0

� �� �
, (3)

where

m ¼
gð1� Dk=k0Þ

1þ gð1� Dk=k0Þ
.

Eq. (3) is obtained by substituting k0 � Dk for k and by recognizing that, at higher frequencies, the
characteristic equation for an uncracked, clamped–clamped beam is approximately cosðk0LÞ ¼ 0. Note that
the quantities k, k0, Dk, g, and m all depend on the given mode m of interest.

The plus sign in Eq. (3) applies to the even-symmetric modes, meaning those modes having even-symmetric
deflection about midspan. The minus sign in Eq. (3) applies to the odd-symmetric modes, meaning those
modes having odd-symmetric deflection about midspan.

Eq. (3), like Eq. (2), applies to clamped–clamped, free–free, and cantilever beams. Eq. (3) also applies to
simply supported beams. For example, Eq. (3) may be obtained from Narkis [7] by following the same steps
used to obtain Eq. (3) from Eq. (1). Narkis gives the characteristic equation for a simply supported beam with
1Note the difference between the near-field components of beam deflection and the region of the beam defined as the near field. The

near-field components of beam deflection are the exponential decay terms in the solution to the bending wave equation. These components

contribute to beam deflection over the entire length of the beam, but are most significant within the region defined as the near field. The

near field is defined here as the region of the beam within about one-half wavelength of either boundary [25]. Consequently, the far field

consists of all points on the beam that are not in the near field. Wavelength may be estimated from wavenumber, for either the damaged or

the undamaged beam, using the relation l ¼ 2p=k. Wavelength may also be estimated by doubling the distance between two adjacent, far-

field deflection nodes. Note that the extent of the far field, and thus the region in which the wavenumber shift theory is valid, decreases with

crack growth. This decrease, however, is generally small and inconsequential, especially for smaller cracks and higher frequencies.
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an arbitrarily located crack. Generalizing even further, Eq. (3) applies to any symmetric beam with classical
boundary conditions.

Note that Eq. (3), derived for symmetric beams only, is valid for a cantilever beam, an asymmetric beam.
This apparent discrepancy is resolved by recognizing that, at higher frequencies, the far field deflection of a
cantilever is nearly symmetric about midspan [26, p. 208, 28, pp. 110, 119–123, 29, pp. 121–130]; the
asymmetry of the cantilever is due to the boundary near-field components, and is thus limited primarily to the
near field. Considering the discussion given here, a symmetric beam is henceforth defined as one that, in its
undamaged state, and in the far field, is perfectly or nearly symmetric about midspan. Eq. (3), and the
upcoming wavenumber shift expressions derived from Eq. (3), are therefore valid for beams having this
generalized symmetry. Note that a beam having this generalized symmetry necessarily has either a deflection
node or a deflection anti-node at midspan.

Eq. (3) applies not only to symmetric, lossless beams with classical boundary conditions, but also to
symmetric, lossless beams with general, or non-classical, boundary conditions. Eq. (3) is valid, however, only if
the non-classical boundaries have a negligible effect on wavenumber shift.2 But even when the boundary
conditions are such that Eq. (3) is valid, Eq. (3) is less accurate near the beam boundaries. The effect of a
boundary crack, or a near-boundary crack, varies substantially depending on the boundary. Eq. (3) cannot be
accurate near the beam boundaries simply because Eq. (3) gives the same amount of wavenumber shift no
matter what the boundary conditions.

Eq. (3) may be rewritten as

sin½DkL� arctanðmÞ� ¼ � sin½arctanðmÞ� cos 2k0xs 1�
Dk

k0

� �� �
(4)

by using the identities [31, p. 121]

u sinðyÞ � v cosðyÞ ¼ u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

v

u

	 
2r
sin y� arctan

v

u

	 
h i
; ua0

and [32, p. 55]

sin½arctanðuÞ� ¼
uffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u2
p .

Eq. (4) is a high-frequency characteristic equation for wavenumber shift. The assumptions made so far are
higher frequencies, beam symmetry, the crack is in the far field, and the boundaries do not explicitly contribute
to wavenumber shift.

A detailed analysis of Eq. (4) reaffirms the well-known result that wavenumber shift is zero when a crack is
located where bending stresses are zero. A detailed analysis of Eq. (4) also indicates that, contrary to previous
results, the crack locations for which wavenumber shift is a maximum are not, in general, the points in the
undamaged beam where bending stress is a maximum. The crack locations of maximum wavenumber shift,
however, are close to the points of maximum bending stress in the undamaged beam. Additionally, the crack
locations of maximum wavenumber shift vary with crack length. In other words, the maximum wavenumber
shift for a crack of length a1 occurs when the crack is located at point xs;1. The maximum wavenumber shift for
a crack of length a2, however, occurs when the crack is located at point xs;2, where point xs;2 is generally
different than point xs;1. Although the results of the analysis given here indicate that the crack locations of
maximum wavenumber shift vary with crack length, the analysis yields the well-known result that if crack
length approaches a limiting length of zero, the crack locations of maximum wavenumber shift approach the
points of maximum bending stress in the undamaged beam.
2In general, a non-classical boundary can contribute to wavenumber shift [13]. The growth of a crack causes a change in a given

resonance frequency. If the frequency changes, however, and the boundary impedance varies with frequency, then the boundary

impedance also changes. The change in boundary impedance can then cause further change in the resonance frequency. Thus, although the

only physical modification in the system is the growth of the crack, both the crack and the boundary can contribute to overall frequency

shift or wavenumber shift. Note, however, that although a non-classical boundary can affect frequency shift and wavenumber shift, it does

not always affect frequency shift and wavenumber shift. The effect of a given boundary is determined by the frequency dependence of the

boundary impedance (see Ref. [13] for more detail).
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Additional approximations are needed to linearize Eq. (4) and obtain an explicit solution for wavenumber
shift. First, assume that the change in a resonance wavenumber is much less than the initial resonance
wavenumber, or jDk=k0j51 [13, pp. 33–34, 113, 25, pp. 40–41]. This assumption is a perturbation
approximation, and at first glance, appears to limit any subsequent results to the small crack regime. A closer
inspection, however, reveals that although the approximation jDk=k0j51 is better for smaller cracks (and
higher frequencies), it is still valid for deeper cracks. The reason that the approximation jDk=k0j51, or
jDkL=ðk0LÞj51, is valid for deeper cracks is because dimensionless wavenumber shift DkL cannot exceed p=2
(according to Eqs. (5) and (6)), but the dimensionless absolute wavenumbers k0L can be much greater than
p=2. As an example, if DkL ¼ p=4, or half the maximum possible amount of wavenumber shift, and if
k0LF5p=2 for the second mode of a clamped–clamped beam [28], the crack is deep but the quantity
DkL=ðk0LÞ is only 0.1, a number that can be considered much less than one.

Another approximation needed to linearize Eq. (4) is sin½DkL� arctanðmÞ�FDkL� arctanðmÞ. This
approximation is possible since 0pDkLpp=2, since 0p arctanðmÞpp=4, and since both DkL and arctanðmÞ
generally increase with increasing crack length. Upcoming wavenumber shift expressions indicate that the
quantity DkL� arctanðmÞ is bounded roughly by �p=4 and p=4. The approximation sinðyÞFy is in error
by about 10 percent for yF� p=4, this being a worst-case scenario. The approximation sin½DkL�

arctanðmÞ�FDkL� arctanðmÞ is better for smaller cracks and for crack locations closer to midspan.
One final approximation needed to linearize Eq. (4) is sin½arctanðmÞ�F arctanðmÞ. This approximation,

possible because 0p arctanðmÞpp=4, is in error by about 10 percent near final fracture, this being a worst-case
scenario. Incorporating the approximations of this and the previous paragraphs into Eq. (4) and rearranging
gives

DkL ¼ 2 arctan
g

1þ g

� �
cos2ðk0xsÞ (5)

for the even-symmetric modes, and

DkL ¼ 2 arctan
g

1þ g

� �
sin2ðk0xsÞ (6)

for the odd-symmetric modes.
Eqs. (5) and (6) indicate that wavenumber shift is approximately proportional to the potential energy in the

uncracked beam at the (future) crack location. This result is significant because it indicates that, for a crack in
the vibratory far field, wavenumber shift is proportional to potential energy not only for a small crack, a well-
known result [8,12,21], but also for a deeper crack.

Eqs. (5) and (6) collapse to explicit expressions given in the literature for a beam with a small, arbitrarily
located crack. For example, Eqs. (5) and (6) collapse to expressions given by Morassi [8], Hasan [9], and Liang
and Hu [10,11] after assuming arctan½g=ð1þ gÞ�Fg, and after assuming beam deflection is predominantly
sinusoidal in space. Additionally, Kasper [13, pp. 57–61] shows the equivalence between Eqs. (5) and (6) and
Gudmundson’s energy-based expression [12].

Eqs. (5) and (6) are derived using a set of approximations categorized as ‘‘high frequency.’’ Eqs. (5) and (6)
are also derived using Bernoulli–Euler beam theory and lumped elements. Since Bernoulli–Euler theory and
lumped elements are generally applicable only for ‘‘low’’ frequencies, the high-frequency approximations used
in the derivation of Eqs. (5) and (6) seem to conflict with the underlying modelling approach. Fortunately, the
high-frequency approximations do not render the analysis invalid. Instead, the high-frequency approxima-
tions merely introduce a lower frequency limit that would otherwise be absent. As an example, consider the
beams used in the experimental portion of this work. For these beams, Eqs. (5) and (6) agreed with the in-
plane experimental results for modes two through eight (Eqs. (5) and (6), surprisingly, even agreed with the in-
plane experimental results for the fundamental mode, albeit for small defect sizes). Theoretical analysis
indicates that Bernoulli–Euler theory was valid for the beams, to within a 10 percent error in wavenumber,
up to the 20th mode [13,29, pp. 114–115]. Thus, Bernoulli–Euler theory was valid from the fundamental
mode to mode 20, but the high-frequency approximations used in the theoretical analysis limit the results to
modes two through 20. So in general, even though Eqs. (5) and (6) are derived using approximations labelled
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‘‘high-frequency,’’ Eqs. (5) and (6) are generally valid for a wide range of modes, a range that even includes the
lowest beam modes.

Fig. 2 is a plot of normalized wavenumber shift versus crack location xs=L for two values of g. Normalized
wavenumber shift is denoted k and is defined as k ¼ DkL=ðp=2Þ. Wavenumber shift DkL is normalized by p=2
because Eqs. (5) and (6) indicate that, for every mode, wavenumber shift DkL does not exceed p=2. The curves
in Fig. 2 correspond to the fifth bending mode of a clamped–clamped beam. The solid curves represent
wavenumber shift according to the approximate, energy-proportional expression given in Eq. (5), the dashed
curves represent wavenumber shift obtained from the high-frequency characteristic equation of Eq. (4), and
the dotted curves represent wavenumber shift obtained from the full characteristic equation, Eq. (1). Note that
the wavenumber shift curves obtained from the high-frequency characteristic equation (dashed) coincide with
the wavenumber shift curves obtained from the exact characteristic equation (dotted) for jxs=Lju0:33. The
lower set of curves in Fig. 2 corresponds to a small crack ðg ¼ 1=10Þ, and the upper set of curves corresponds
to a deep crack ðg ¼ 1=

ffiffiffi
2
p
Þ.

Fig. 2 indicates that the explicit wavenumber shift expressions given in Eqs. (5) and (6) agree well with the
exact theory for a wide range of crack locations, and for a wide range of crack depths, including both shallow
cracks and deep cracks. Fig. 2 also indicates that, as expected, the explicit wavenumber shift expressions given
in Eqs. (5) and (6) are more accurate for smaller cracks and for crack locations closer to midspan. And
although not shown in Fig. 2, numerical analysis indicates that the error in the explicit wavenumber shift
expressions of Eqs. (5) and (6) generally does not increase with increasing mode number.

The frequency quantity used throughout this paper is wavenumber shift. Wavenumber shift is used rather
than frequency shift mainly because the mathematics associated with wavenumber shift are simpler. Explicit
expressions for frequency shift, however, may be obtained from the explicit wavenumber shift expressions
using the frequency–wavenumber relation

Df

f 0

¼ 1� 1�
Dk

k0

� �2

¼ 2
Dk

k0
1�

1

2

Dk

k0

� �
. (7)

The frequency–wavenumber relation of Eq. (7) simplifies to

Df

f 0

¼ 2
Dk

k0
(8)

if jDk=ð2k0Þj51.
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Fig. 2. Theoretical, normalized wavenumber shift k versus crack location xs=L for the fifth mode of a clamped–clamped beam: Eq. (5)

(solid), Eq. (4) (dashed), exact (Eq. (1)) (dotted).



ARTICLE IN PRESS
D.G. Kasper et al. / Journal of Sound and Vibration 312 (2008) 1–18 9
A few authors [6,7,9,23] note that the ratio of frequency (or wavenumber) shift for two different modes
depends only on initial frequency and crack location; the ratio does not explicitly depend on crack compliance
or on geometric or material parameters. Eqs. (5) through (8) indicate, however, that this frequency shift ratio
is independent of crack compliance, geometric parameters, and material parameters only approximately, and
only in the small-crack limit. In general, the ratio of frequency or wavenumber shift for two different modes
depends on crack compliance and on the beam properties.

4. Relating equivalent compliance to crack length

The wavenumber shift theory given in the previous section relates wavenumber shift to an equivalent crack
compliance. To relate wavenumber shift to crack depth rather than to crack compliance, expressions are
needed that relate equivalent crack compliance to crack depth. The necessary compliance expressions can be
obtained from the fracture mechanics field, using the procedure outlined by each of Dimarogonas and Paipetis
[20, pp. 144–148, 160–163], Papaeconomou and Dimarogonas [21], and Tada et al. [33, pp. 487–488]. The
procedure involves using Castigliano’s theorem, along with the theory of Griffith, Irwin, and Paris.

The equivalent compliance of a transverse, through-the-thickness crack may be written as

Cs ¼
ht

E

q2

qM2

Z a=h

0

Z 1=2

�1=2
K2

I dðy=tÞdða=hÞ, (9)

where y is the coordinate in the thickness direction (see Fig. 1). Eq. (9) incorporates the assumption of mode I
loading only. The quantity KI is therefore the mode I stress-intensity factor. The quantity M in Eq. (9) is a
remotely applied bending moment. Eq. (9) represents an energy equivalence, indicating that the energy stored
in the equivalent rotational spring is the energy released during crack extension.

The system of interest in this work is a single-edge-notch (SEN) specimen vibrating both in plane and out of
plane. An SEN specimen is shown in Fig. 3, along with the definitions of in-plane bending (bending about the
strong axis) and out-of-plane bending (bending about the weak axis). For the beams used in the experimental
part of this work, the width h of the beams was larger than the thickness t.

For an SEN specimen vibrating in plane [33, pp. 55–56],

KI ¼
6M

th2

ffiffiffiffiffiffi
pa
p

f s; in

a

h

	 

,
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Fig. 3. Definitions of in-plane bending (a) and out-of-plane bending (b) for an SEN specimen.
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This stress-intensity factor is accurate to within a half-percent for all a=h. Since the stress-intensity factor is

constant along the crack front during in-plane bending, the integral
R 1=2
�1=2 dðy=tÞ in Eq. (9) is equal to one. The

equivalent crack compliance for an SEN specimen vibrating in plane is therefore given by

Cs ¼
12h

EI

Z a=h

0

p
2

a

h
f 2

s; in

a

h

	 

dða=hÞ. (10)

The equivalent compliance of Eq. (10) is valid only for an open crack.
The equivalent compliance for an SEN specimen bending out of plane is apparently not available in the

literature [19]. An appropriate stress-intensity factor is apparently not available either. Fortunately, the
equivalent compliance for an SEN specimen bending out of plane can be estimated using the stress-intensity
factors for double-edge notch (DEN) and center-cracked (CC) specimens in tension. The DEN stress-intensity
factor is appropriate for smaller cracks and the CC stress-intensity factor is appropriate for deeper cracks. The
DEN and CC stress-intensity factors can be substituted for the missing SEN stress-intensity factor because a
DEN specimen and a CC specimen are each effectively two SEN specimens. In particular, the DEN and CC
specimens reflect the minimal in-plane, or lateral, deflection that occurs when an SEN specimen bends out of
plane. An SEN specimen, although asymmetric, does not deflect in plane during out-of-plane bending because
any in-plane deflection due to out-of-plane, tensile bending stresses is offset by an opposing deflection due to
out-of-plane, compressive bending stresses.

The equivalent compliance of an SEN specimen bending out of plane is given approximately by

Cs ¼
4h

EI
Fs; out

a

h

	 

, (11)
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h i2
dða=hÞ (12)

for a small crack and
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cosððp=2Þða=hÞÞ
1� 0:025
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2
þ 0:06

a

h

	 
4� �2
dða=hÞ (13)

for a deep crack. The DEN stress-intensity factor used in Eq. (12) is accurate to within 0.5% for any a=h

and the CC stress-intensity factor used in Eq. (13) is accurate to within 0.1% for any a=h [33, pp. 40–48, 34,
pp. 1.4.2-4, 1.4.3-1]. Note that an extra factor of 1

2 enters into Eqs. (12) and (13) when applying the DEN and
CC stress-intensity factors to an SEN specimen. Eqs. (11) through (13) are valid only for open cracks.

5. Experimental apparatus and method

The beams used in the experiments were free–free, SEN beams. Free–free conditions were simulated by
suspending a beam with fishing line (Fig. 4). The fishing line, or suspension lines, was looped around the beam
at symmetric nodal locations for a single mode of the undamaged beam [27, p. 260]. Each beam was suspended
such that gravity acted to bend the beam about its strong axis. This beam orientation was used for both
in-plane bending and out-of-plane bending.

Dynamic measurements were made on a free–free beam by impacting the beam at one end and monitoring
the resulting free vibration at the other end [35,36]. The free vibration was monitored using microphones
located close to the beam. The microphone outputs were amplified, low-pass filtered, and then captured on a
two-channel, 16-bit digital signal processing (DSP) board. The DSP board had fourth-order, equal-value,
Sallen–Key anti-aliasing filters, each with a cutoff frequency of about 2780Hz. The sampling rate on the DSP
board was 16 kHz.

The DSP board continuously computed 16384-point discrete Fourier transforms (DFT) using the fast
Fourier transform algorithm. The DFTs were computed using a Riesz data window [37], 25 percent overlap,
and no averaging. Resonance frequencies were obtained from the DFTs using a simple peak-picking
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Fig. 4. The free–free beam used in the experiments.
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algorithm. Because the beams were lightly damped, the uncertainty in a frequency estimate is approximately
f s=ð2

ffiffiffi
3
p

NÞHz, where f s is the sampling rate and N is the DFT size [13, pp. 146–148]. With a sampling rate f s

of 16 kHz and a DFT size N of 16 384, the frequency uncertainty is 0.3Hz.
The normalized wavenumber shift is obtained from frequency using the relation

k ¼
4
ffiffiffi
34
p

ffiffiffi
p
p

Lffiffiffi
h
p

ffiffiffiffi
r
E

4

r
ð
ffiffiffiffiffi
f 0

p
�

ffiffiffi
f

p
Þ, (14)

where f 0 is the experimental resonance frequency for a given mode of the undamaged beam and f is the
experimental resonance frequency of the corresponding mode in the damaged beam. The width h in Eq. (14) is
replaced with the thickness t for out-of-plane bending. Eq. (14) is obtained via the dispersion relation for
bending (Section 3).

Several preliminary experiments were performed to assess the effect of the suspension lines on wavenumber
shift. The results of these experiments indicate that the suspension lines had a negligible effect on wavenumber
shift. Results are therefore presented only for one suspension line location, that location being the second-
outermost nodes of mode five. The relative locations of the second-outermost nodes of mode five are given by
x=L ¼ �0:274 [38].

The beams used in the experiments were oil-hardening ground flat stock, tool steel AISI-O1. The beams
were 1:27þ 0:01 cm ð0:5þ 0:005 inÞ wide by 0:318þ 0:003 cm ð0:125þ 0:001 inÞ thick, according to the
manufacturer’s specifications. The beams used in the wavenumber shift experiments were milled to a length of
81.359 cm (32 1/32 in). The beams were chosen to be slender so that multiple modes occurred in a relatively
small bandwidth.

The longitudinal sound speed
ffiffiffiffiffiffiffiffiffi
E=r

p
of the beams, needed to convert between bending frequency

and bending wavenumber (see Eq. (14)), was estimated dynamically using the apparatus shown in
Fig. 4. The longitudinal sound speed for the beams is 5181� 2m=s, where the 2m/s uncertainty
represents a standard deviation of the mean with 11 degrees of freedom [39,40, pp. 102–106]. Note that
flexural resonance frequencies were used to estimate longitudinal sound speed rather than longitudinal
resonance frequencies.

A single-edge slot was introduced at midspan of the free–free beams. Each single-edge slot was assumed to
be a suitable substitute for an open crack (see Refs. [13, pp. 81–85, 185, and 19,41]). Slots were cut using a
jeweler’s saw, the blades for which had a manufacturer-specified width of 0.016 cm (0.0063 in). After cutting,
measured slot widths were typically between 0.018 and 0.023 cm at or near the slot tip. The variation in both
the width and shape of the slot introduced negligible error into the experiments.

Slot depth was measured optically, on both the fronts and backs of the beams, using a contact reticle and a
low-power microscope. A reported slot depth is the average of the individual front and back measurements for
a given slot depth. The uncertainty associated with normalized slot depth a=h is 0.002, where the 0.002
uncertainty is a standard deviation of the mean with three degrees of freedom.
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Wavenumber shift experiments were performed for four beams. The experimental results were very similar
for all four beams. As a result, data is presented for only one beam, that beam being beam 11. Referring to
Eq. (14), beam 11 had a width h of 1:2743� 0:0007 cm, a thickness t of 0:3188� 0:0002 cm, and a length L of
81:359� 0:001 cm. Each of the dimensional uncertainties represents a standard deviation of the mean. The
width uncertainty of 0.0007 cm and the thickness uncertainty of 0.0002 cm each have seven degrees of freedom,
and the length uncertainty of 0.001 cm has three degrees of freedom.
6. In-plane experimental results

Fig. 5 is a comparison between experimental, normalized wavenumber shift and theoretical, normalized
wavenumber shift for the in-plane bending modes of beam 11. The solid lines represent experimental data,
with pluses denoting the data points. The dotted lines in Fig. 5 represent theoretical wavenumber shift
according to the exact, Bernoulli–Euler theory for a cracked, free–free beam [22]. The theoretical curves are
generated using experimentally obtained values of width and length. The modes shown in Fig. 5 are, from
bottom to top, one, three, five, and seven. These are the lowest four in-plane, even-symmetric modes.3

As shown in Fig. 5, the experimental results generally agree well with the exact theory.4 For modes one and
three, the experimental results agree closely with the exact theory for all of the slot depths tested. For mode
five, experiment and exact theory agree closely up to a slot depth of about a=h ¼ 0:75. Beyond a=h ¼ 0:75, the
experimental results for mode five differ slightly from the exact theory. For mode seven, experiment and exact
theory agree closely up to a slot depth of about a=h ¼ 0:5. For deeper slots, however, the experimental results
for mode seven deviate significantly from the exact theory. One likely explanation for the discrepancy between
experiment and theory for modes five and seven is coupling. Coupling effects, either a result of modal coupling
or coupling between beam segments, are reported elsewhere in the literature [15,19,42].

Another comparison of experimental and theoretical wavenumber shifts for beam 11 is given in Fig. 6. The
experimental curves in Fig. 6 (solid) are the same as in Fig. 5, but the theoretical curves in Fig. 6 (dashed and
dash-dot) are different than those in Fig. 5. The theoretical curves in Fig. 6(a) (dashed) correspond to the
explicit, high-frequency theory (Eqs. (5) and (10)), and the theoretical curves in Fig. 6(b) (dash-dot)
correspond to the explicit, small-crack theory available in the literature [6,10,11].

The results in Fig. 6 show that, for the fundamental mode, the explicit, high-frequency theory agrees with
the experimental wavenumber shift data only for smaller slots. For mode three, the explicit, high-frequency
theory agrees with the experimental wavenumber shift data over a wide range of slot depths. For deep slots,
however, the high-frequency theory is in slight disagreement with the mode three experimental data. Finally,
for modes five and seven, the explicit, high-frequency theory agrees with the experimental wavenumber shift
data for the same ranges of slot depth over which the exact theory agrees with the experimental data (Fig. 5).

Still considering the results shown in Fig. 6, the explicit, high-frequency theory is appropriate over a wider
range of slot depths than the explicit, small-crack theory for modes three and above. Additionally, for modes
three and above, the explicit, high-frequency theory is more accurate than the explicit, small-crack theory for
the range of slot depths over which both theories are valid. Finally, from Fig. 6 it can be seen that the small-
crack theory generally overestimates wavenumber shift, and can thus underestimate crack depth if the theory
is used to estimate crack depth from measured frequencies. Although a comparison with the small-crack
theory is not presented for the out-of-plane results (Section 7), the same observations can be made based on
the out-of-plane results.

With regard to the fundamental mode, from Fig. 6 it can be seen that the explicit, small-crack theory
available in the literature is accurate over a wider range of slot depths than the explicit, high-frequency theory.
This result is expected since the explicit, small-crack theory is generally applicable to the lowest beam mode,
whereas the explicit, high-frequency theory is generally inapplicable to the lowest beam mode. Note that the
3The dimensionless resonance wavenumbers of an uncracked, free–free beam are approximately kL ¼ mpþ p=2 at higher frequencies

[28], where m is a mode number and m ¼ 1; 2; 3; . . . : Note that odd mode numbers correspond to even-symmetric modes and even mode

numbers correspond to odd-symmetric modes.
4The error bars associated with both normalized slot depth a=h and normalized wavenumber shift k are too small to be identified in the

plots, and are therefore omitted from all wavenumber shift curves.
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Fig. 6. Normalized wavenumber shift versus normalized slot depth for the first four in-plane, even-symmetric modes: (a) experiment

(solid) and Eqs. (5) and (10) (dashed); (b) experiment (solid) and the small-crack theory from Refs. [6,10,11] (dash-dot).
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Fig. 5. Normalized wavenumber shift versus normalized slot depth for the first four in-plane, even-symmetric modes: experiment (solid),

exact theory from [22] plus Eq. (10) (dotted).
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theoretical curves in Figs. 5 and 6 are generated from theory for a cracked beam but the experimental data was
obtained from a slotted beam.

Even though the explicit, high-frequency theory is generally inapplicable to the fundamental beam mode,
from Fig. 6 it can be seen that the high-frequency theory can be appropriate for the fundamental beam mode
in specific cases. The applicability of the explicit, high-frequency theory to the fundamental mode depends on
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the system characteristics, and therefore varies from system to system. As a result, discussions about the
applicability of the explicit, high-frequency theory to the fundamental beam mode are deliberately vague
throughout this paper.

The experimental results given so far apply to the in-plane, even-symmetric bending modes. Experi-
ments were also performed, however, for the in-plane, odd-symmetric bending modes. Although not
shown here (see Ref. [13] for full results), the experimental results for the in-plane, odd-symmetric modes
indicate that, as expected, the odd-symmetric modes shifted minimally over the entire range of slot depths
tested. The odd-symmetric modes are those modes for which the slot coincided with the central-most
deflection node.
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Fig. 7. Normalized wavenumber shift versus normalized slot depth for out-of-plane bending modes three, seven, 11, and 15: experiment

(solid), Eqs. (5), (11), and (12) (DEN KI ) (dashed).
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Fig. 8. Normalized wavenumber shift versus normalized slot depth for out-of-plane bending modes three, seven, 11, and 15: experiment

(solid), Eqs. (5), (11), and (13) (CC KI ) (dashed).
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7. Out-of-plane experimental results

Figs. 7 and 8 show experimental, normalized wavenumber shift and theoretical, normalized wavenumber
shift for four of the out-of-plane bending modes of beam 11. The four modes represented in Figs. 7 and 8 are,
from bottom to top, modes three, seven, 11, and 15. Results for modes five, nine, and 13 are not shown, but
are very similar to those for modes three, seven, 11, and 15. The explicit, high-frequency theory (Eq. (5)) is
used to generate the theoretical curves in both Figs. 7 and 8. Figs. 7 and 8 differ, however, in that the
theoretical curves in Fig. 7 are generated using the stress-intensity factor for a DEN specimen in tension
(Eqs. (11) and (12)) while the theoretical curves in Fig. 8 are generated using the stress-intensity factor for a
CC specimen in tension (Eqs. (11) and (13)).

From Figs. 7 and 8 it can be seen that, overall, the experimental results for out-of-plane bending agree well
with the theoretical results. In Fig. 7, experiment and theory agree closely for smaller slots, but not for deeper
slots. The lack of agreement for deeper slots is expected, though, since the theoretical curves in Fig. 7 are
generated using the stress-intensity factor for a DEN specimen. From Fig. 8 it can be seen that experiment and
theory agree for both small and deep slots, but the agreement for smaller slots is not as close as in Fig. 7.
Again, this result is expected since the theoretical curves in Fig. 8 are generated using the stress-intensity factor
for a CC specimen.

The results given so far in this section apply to the out-of-plane, even-symmetric bending modes.
Wavenumber shift results were also obtained, however, for the out-of-plane, odd-symmetric bending modes.
These wavenumber shift results are shown in Fig. 9. In increasing order of wavenumber shift at a=h ¼ 0:895,
the odd-symmetric modes in Fig. 9 are modes four, six, 10, 12, eight, and 14.

The data in Fig. 9 shows that the out-of-plane, odd-symmetric bending modes shifted minimally over a
wide range of slot depths. This minimal shift is expected since the odd-symmetric modes had a deflection
node that coincided with the slot location. For deep slots, however, some of the odd-symmetric modes shifted
more significantly. One possible explanation for the non-negligible wavenumber shift at large slot depths is
coupling [15,19,42].

8. Conclusions

Explicit wavenumber shift expressions are derived in Section 3 for a symmetric beam with a crack located in
the vibratory far field. These expressions indicate that wavenumber shift is approximately proportional to the
potential energy in the uncracked beam at the (future) crack location. This result applies not only to small
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cracks, but also to deeper cracks. The explicit, high-frequency wavenumber shift expressions of Section 3 are
therefore valid beyond the crack depths where the explicit, small-crack theory available in the literature breaks
down. In addition, for higher modes and for cracks in the vibratory far field, the explicit, high-frequency
wavenumber shift expressions tend to be more accurate than the explicit, small-crack expressions for the range
of crack depths over which both theories are valid.

The wavenumber shift expressions given in Section 3 are initially derived from the characteristic equation
for a clamped–clamped beam. These wavenumber expressions can also be derived, however, from
characteristic equations given in the literature for beams with other boundary conditions [7,22,23,25]. In
addition, the explicit, energy-proportional wavenumber shift expressions given in Eqs. (5) and (6) are
equivalent to explicit, small-crack expressions given in the literature (if the crack is assumed to be small, and if
beam deflection is assumed to be predominantly sinusoidal in space) [6,8–12]. These equivalences and
relationships with previous results not only help validate the explicit, high-frequency theory given here, but
also help corroborate and unify the various theories available in the literature.

Although the explicit expressions given here are valid for deeper cracks, the expressions possess a few
drawbacks relative to the explicit, small-crack expressions given in the literature. For example, the explicit
wavenumber shift expressions given here are limited to symmetric, uniform beams, and are generally
inaccurate for the lowest beam mode. In addition, the explicit solutions for wavenumber shift derived here are
generally inaccurate for cracks located within a boundary near field.

From the results of Sections 6 and 7 it can be seen that the experimental results, obtained for a beam with a
midspan slot, generally agree very well with the theory from Section 3. Theory and experiment agree for a
large number of modes, for a wide range of crack or slot depths, and for both in-plane and out-of-
plane bending. The experimental results therefore validate the high-frequency theory for the one crack
location tested.

The experimental wavenumber shift curves presented in this work represent wavenumber shift for a slotted
beam. These experimental wavenumber shift curves agree with theoretical wavenumber shift curves generated
from theory for a cracked beam. This agreement between the slotted-beam experimental results and the
cracked-beam theory indicates that, from the perspective of wavenumber shift or frequency shift, a beam with
a thin slot can be used as a suitable representation of a beam with an open crack.

The results of Sections 6 and 7 indicate that theory and experiment agree not only for the case of an SEN
specimen bending in plane, but also for the case of an SEN specimen bending out of plane. Since the out-of-
plane equivalent compliance is approximated using stress-intensity factors for DEN and CC specimens
(Section 4), the agreement between theory and experiment shown in Section 7 indicates that if an out-of-plane,
equivalent compliance for an SEN specimen is unavailable, this equivalent compliance may be approximated
using stress-intensity factors for DEN and CC specimens.
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